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KINEMATICS OF FINITE-STRAIN ELASTIC–INELASTIC DEFORMATION

UDC 539.3A. A. Rogovoi

Polar decomposition tensors are constructed for slightly disturbed kinematic elastic, inelastic, and
thermal strain tensors. Provided that the inelastic and thermal site gradients are pure deformations
without rotations, relations are obtained between inelastic small strains and small rotations and be-
tween thermal small strains and small rotations which transform an intermediate configuration to a
close current configuration.

Key words: elastic, inelastic, and thermal strains, small disturbances, eigenvectors and eigen-
values, polar decomposition.

Introduction. In [1–4], the kinematics of elastic–inelastic and thermo-elastic–inelastic deformation pro-
cesses is described by the relation

F = f · F∗. (1)

Here F , f , and F∗ are the elastic–inelastic (thermo-elastic–inelastic) site gradients which transform the initial
configuration to the current one, an intermediate configuration close to the current one to the actual configuration,
and the initial configuration to the intermediate one. In turn, f = fE ·fIN ·fΘ, where fE, fIN, and fΘ are the elastic,
inelastic, and thermal site gradients, each of which is defined by the relation fi = g + εhi (the subscript i refer to E,
IN, or Θ), g is a unit tensor, ε is a small positive quantity that characterizes the closeness of the intermediate and
current configurations, and hi is the gradient of the elastic, inelastic, and thermal vectors of small displacements ui

relative to the intermediate configuration. This representation admits commutation of the site gradients fE, fIN,
and fΘ allows f to be represented as f = g+εh, where h = hE+hIN+hΘ is the total-displacement gradient (accurate
up to terms linear in ε). Each displacement gradient is represented in terms of the symmetric part e, eE, eIN, and
eΘ (small deformations) and the skew-symmetric part d, dE, dIN, and dΘ (small rotations), e = eE + eIN + eΘ, and
d = dE + dIN + dΘ (these and only these small total deformations and rotations are compatible).

Relation (1) reflects the history of the process, i.e., any sequence and duration of purely elastic, purely
inelastic, and purely thermal deformations. The gradient F∗ is normalized to the time t∗, the gradient F to the
current time t, and t − t∗ = ετ (τ > 0). In [3, 4], the kinematics (1) was split into the thermal kinematic FΘ,
inelastic kinematic FIN, and purely elastic kinematic FE using the notions of matricant and multiplicative integral.
As a result, relation (1) is represented as

F = FE · FIN · FΘ = [g + ε(hE + hIN + hΘ)] · F∗, F∗ = FE∗ · FIN∗ · FΘ∗, (2)

where the site gradients F , FE, FIN, and FΘ are determined at the current time t, and the same gradients denoted
by asterisk ∗ are determine at the time t∗. Representation (2) is similar in shape to the well-known Lie expansion
but is free from the drawbacks of the latter [3, 4]. The expressions for FE, FIN, and FΘ obtained in [3, 4] are written
as

FE = (g + εhE) · FE∗, FIN = (g + εF−1
E∗ · hIN · FE∗) · FIN∗,

FΘ = (g + εF−1
IN∗ · F−1

E∗ · hΘ · FE∗ · FIN∗) · FΘ∗.
(3)
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We note that in (2) and (3), the subscripts IN and Θ can be interchanged. It is convenient to write relations (3) as

Fi = (g + εPi) · Fi∗, Pi =

⎧
⎪⎨

⎪⎩

hE, i ≡ E,

F−1
E∗ · hIN · FE∗, i ≡ IN,

F−1
IN∗ · F−1

E∗ · hΘ · FE∗ · FIN∗, i ≡ Θ.

(4)

All relations and equations of continuum mechanics should satisfy the principle of objectivity, i.e., they
should be materially independent of the frame of reference in which the motion is considered. It has been shown [4]
that, for expansion (2), the principle of objectivity is satisfied for all relations if the site gradients FIN and FΘ are
pure deformations without rotations: FIN = UIN = VIN and FΘ = UΘ = VΘ, i.e., if in the polar decomposition of
the tensors FIN = RIN · UIN = VIN · RIN and FΘ = RΘ · UΘ = VΘ · RΘ, the orthogonal tensors RIN and RΘ are
unity tensors: RIN = RΘ = g. The latter condition should define the missing relations between eIN and dIN and
between eΘ and dΘ in Eqs. (3) and (4). These relations are missing because constitutive equations are known only
for small inelastic and thermal strains (rates). This, for example, is the associated law in the case of plasticity
[1], the differential law ėIN = T/μ (T is the stress tensor and μ is the viscosity) in the case of viscosity [2], and
the law ėΘ = βΘ̇g (β is the linear thermal-expansion coefficient and Θ is the absolute temperature) in the case
of thermo-elasticity. For small rotations (rates), relations of this type are absent. The present paper, which is a
continuation of [4], seeks to establish such relations. In addition, it is of interest to determine the structure of the
elastic, inelastic, and thermal kinematic tensors of pure strain and pure rotation and the laws of their variation
with variation of their corresponding site gradients.

Taking into account that the relationship between the kinematic tensors F , R, U , and V corresponding to
the total, elastic, inelastic or thermal strains is given by the relations

U =
3∑

i=1

Uiδ
(1)
i δ

(1)
i , V =

3∑

i=1

Uiδ
(2)
i δ

(2)
i , R =

3∑

i=1

δ
(2)
i δ

(1)
i , F =

3∑

i=1

Ui δ
(2)
i δ

(1)
i ,

where Ui are the eigenvalues of the symmetric positive definite tensor U (or V ), δ
(1)
i are the unit and orthogonal

eigenvectors of the tensor U , and δ
(2)
i are the unit and orthogonal eigenvectors of the tensor V , we consider their

variation under small disturbances, i.e., for transition from one configuration (intermediate) to another, fairly close
(current) configuration.

An intermediate configuration close to the current configuration is introduced to linearize the equations in
solving nonlinear boundary-value problems, in particular, problems of the nonlinear theory of elasticity (see, for
example, [5]). This approach has also proved effective in constructing kinematic and constitutive equations for
elastic–inelastic media since it allows one to obtain nonholonomic (unrepresentable in finite integral form, unlike for
the case of nonlinear elasticity) evolutionary relations which reflect the history of the process [1–4]. While in the
case of nonlinear elasticity, the introduction of an intermediate configuration close the current one is a convenient
tool for the numerical implementation of boundary-value problems, in the case of elastic–inelastic environments,
this approach provides, in addition, an effective apparatus for constructing kinematic and constitutive relations.
This apparatus is used in this work to study the variation of the indicated kinematic tensors.

1. Eigenvalues and Eigenvectors of a Slightly Disturbed Symmetric Positive Definite Tensor
of the Second Rank. Let A be a symmetric positive definite tensor of the second rank which is represented in
terms of eigenvalues and eigenvectors as

A =
3∑

i=1

Aiδiδi, (1.1)

where Ai > 0 and δi are unit orthogonal vectors. We impart a small disturbance εa (ε is a small positive quantity)
to the tensors A such that the tensor A′ = A + εa is also symmetric and positive definite (from this, it follows
that the tensor a is at least symmetric). Then, by virtue of the small disturbances and continuity of the tensor
A, the eigenvalues and eigenvectors of the tensor A′ can be represented as A′

i = Ai + ελi and δ′
i = (g + εda) · δi.

Here A′
i > 0, δ′

i are unit orthogonal vectors, ελi and εda · δi are small changes in the eigenvalues and eigenvectors
of the tensor A, and da is a skew-symmetric tensor. It is only in this case that the tensor g + εda is orthogonal
and rotates the three orthonormal vectors δi in space without changing their length and the angles between them.
The orthogonality of the tensor g + εda follows from the following. On the one hand, (g + εda)t = g − εda since
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dt
a = −da; on the other hand, from the identity (g + εda)−1 · (g + εda) = g, representing the tensor (g + εda)−1 as

m + εn, we obtain the equality m + ε(n + m · da) = g accurate up to linear terms in ε. Equating the coefficients at
the same powers of ε, we have m = g and n = −da. From this, it follows that (g + εda)t = (g + εda)−1, i.e., the
tensor g + εda is orthogonal.

In view of the aforesaid, the eigenvalue problem for the tensor A′ reduces to three vector relations

[A − Aig + ε(A − Aig) · da + ε(a − λig)] · δi = 0, i = 1, 2, 3.

Taking into account that (A − Aig) · δi = 0 (at i = 1, 2, 3) and representing the tensor A in the form of (1.1), and
the unit tensor in the basis δi, we reduce these three vector relations to nine scalar vectors:

(Aj − Ai)(δj · da · δi) + [(δj · a · δi) − λiδij ] = 0, i, j = 1, 2, 3

(δij is Kronecker symbol), three of which are equivalent. As a result, the system is split into six equations:

(Ai − Aj)(δi · da · δj) + δi · a · δj = 0, i = 1, 2, 3, j =

{
i + 1, i < 3,

1, i = 3,

λi = δi · a · δi, i = 1, 2, 3,
(1.2)

from which, in the case of different eigenvalues Ai, we find λi and the components of the skew-symmetric tensor da

in the basis δi:

da = d12
a (δ1δ2 − δ2δ1) + d23

a (δ2δ3 − δ3δ2) + d31
a (δ3δ1 − δ1δ3), dij

a = −δi · a · δj

Ai − Aj
. (1.3)

If two eigenvalues are equal, for example, A1 = A2 �= A3, only the unit vector δ3 is uniquely determined. The
unit vectors δ1 and δ2 are orthogonal to each other and to the vector δ3 and are unique up to rotation around δ3.
The condition δ1 · a · δ2 = 0, which follows from (1.2), relates this rotation to the symmetric tensor a; in this case,
relation (1.3) implies the arbitrariness of the component d12

a of the skew-symmetric tensor da. If all eigenvalues are
equal, three unit orthogonal vectors δi are related to the tensor a by the conditions

δ1 · a · δ2 = 0, δ2 · a · δ3 = 0, δ3 · a · δ1 = 0,

and all components of the skew-symmetric tensor da are arbitrary.
The tensor A′ can be represented as

A′ = A + εa =
3∑

i=1

[Ai + ε(δi · a · δi)][(g + ε da) · δiδi · (g − εda)]. (1.4)

From this expression, keeping only terms linear in ε, we have

A′ = A + εa = A + εda · A − εA · da + ε

3∑

i=1

(δi · a · δi)δiδi. (1.5)

Substitution of the expression for da into (1.5) yields the relation

A + εa = A + ε(δi · a · δj)δiδj ,

i.e., identity.
Because the tensor A′ is positive definite, there exists a tensor (A′)1/2, which is represented in the form of

(1.4) with eigenvalues to power 1/2:

[Ai + ε(δi · a · δi)]1/2 = A
1/2
i + (ε/2)A−1/2

i (δi · a · δi)

(in the series expansion, only terms linear in ε are kept). As a result, the linearized expression for the tensor
(A′)1/2 is written in form similar to (1.5):

(A′)1/2 = (A + εa)1/2 = A1/2 + εda · A1/2 − εA1/2 · da +
ε

2

3∑

i=1

A
−1/2
i (δi · a · δi)δiδi.
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Substitution of the expression for da into the above expression yields the elegant relation

(A′)1/2 = (A + εa)1/2 = A1/2 + ε
δi · a · δj

A
1/2
i + A

1/2
j

δiδj . (1.6)

The approximate relation (1.6) (in which only terms linear in ε are kept) can be reduced to the exact evolutionary
relation. Rearranging A1/2 to the left side, dividing the entire expression by ε, and letting ε tend to zero, we obtain
the Gâteaux derivative

D(A1/2) =
δi · ȧ · δj

A
1/2
i + A

1/2
j

δiδj . (1.7)

Here all quantities are determined at the time t.
2. Small Disturbances of Kinematic Elastic, Inelastic, and Thermal Strain Tensors and Their

Corresponding Polar Decomposition Tensor. We concretize the above relations with respect to the kinematic
tensors of the Cauchy–Green (C) and Finger (Φ) strain measures. For the tensor FE (3), these measures are
represented as

CE = F t
E · FE = CE∗ + 2εF t

E∗ · eE · FE∗, CE∗ = F t
E∗ · FE∗,

ΦE = FE · F t
E = ΦE∗ + ε(hE · ΦE∗ + ΦE∗ · ht

E), ΦE∗ = FE∗ · F t
E∗

or, using the tensor FE of the polar representation (FE = RE ·UE = VE ·RE, where RE is an orthogonal tensor and
UE and VE are the right and left symmetric positive definite pure strain tensors), they are represented as

U2
E = U2

E∗ + 2εF t
E∗ · eE · FE∗, V 2

E = V 2
E∗ + ε(hE · V 2

E∗ + V 2
E∗ · ht

E). (2.1)

We associate these tensors with the tensors A′, A, and a from expression (1.4). If elastic kinematics is considered and
the tensors are represented using the intermediate configuration, the subscripts E and ∗ are omitted for simplicity.
Then, in the first relation (2.1), the tensor U2

E [we denote it by (U ′)2] corresponds to the tensor A′ in expression

(1.4), the tensor U2 (A = U2) with the eigenvalues Ai = U2
i and the eigenvectors δi = δ

(1)
i

(
U =

3∑

i=1

Uiδ
(1)
i δ

(1)
i

)

corresponds to the tensor A, and the tensor 2F t ·e ·F to the tensor a. In the second relation (2.1), the tensor V 2
E [we

denote it by (V ′)2] corresponds to the tensor A′, the tensor V 2 (A = V 2) played by the with the same eigenvalues

Ai = U2
i as in the first relation but with the eigenvectors δi = δ

(2)
i

(
V =

3∑

i=1

Uiδ
(2)
i δ

(2)
i

)
corresponds to the tensor A,

and the tensor h · V 2 + V 2 · ht to the tensor a. As is known, the orthogonal tensor R transforms the vectors δ
(1)
i to

the vectors δ
(2)
i

(
δ

(2)
i = R ·δ(1)

i ⇒ R =
3∑

i=1

δ
(2)
i δ

(1)
i

)
and the tensor F is represented as F =

3∑

i=1

Ui δ
(2)
i δ

(1)
i . In view

of the aforesaid, expression (1.6) for the tensors U ′ and V ′ is written as

U ′ = U + 2ε
Ui(δ

(2)
i · e · δ(2)

j )Uj

Ui + Uj
δ

(1)
i δ

(1)
j , V ′ = V + ε

U2
i (δ(2)

i · ht · δ(2)
j ) + (δ(2)

i · h · δ(2)
j )U2

j

Ui + Uj
, (2.2)

and expression (1.3), which defines the transformation of the vectors δ
(1)
i to δ

(1)′

i and δ
(2)
i to δ

(2)′

i keeping them
unit and orthogonal, is written as

dU = d12
U (δ(1)

1 δ
(1)
2 − δ

(1)
2 δ

(1)
1 ) + d23

U (δ(1)
2 δ

(1)
3 − δ

(1)
3 δ

(1)
2 ) + d31

U (δ(1)
3 δ

(1)
1 − δ

(1)
1 δ

(1)
3 ),

dij
U = −2

Ui(δ
(2)
i · e · δ(2)

j )Uj

U2
i − U2

j

;
(2.3)

dV = d12
V (δ(2)

1 δ
(2)
2 − δ

(2)
2 δ

(2)
1 ) + d23

V (δ(2)
2 δ

(2)
3 − δ

(2)
3 δ

(2)
2 ) + d31

V (δ(2)
3 δ

(2)
1 − δ

(2)
1 δ

(2)
3 ),

dij
V = δ

(2)
i · d · δ(2)

j − (U2
i + U2

j )(δ(2)
i · e · δ(2)

j )
U2

i − U2
j

.

(2.4)
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Finally, considering that δ
(2)′

i = R′ · δ(1)′

i , δ
(1)′

i = (g + εdU ) · δ(1)
i , δ

(2)′

i = (g + εdV ) · δ(2)
i , and δ

(2)
i = R · δ(1)

i , we
express the orthogonal tensor R′ as

R′ =
{

g + ε
[
d − Ui − Uj

Ui + Uj
(δ(2)

i · e · δ(2)
j )δ(2)

i δ
(2)
j

]}
· R (2.5)

(it is easy to see that the subtracted term in square brackets is a skew-symmetric tensor, similarly to the tensor d).
Relations (2.3)–(2.5) imply that the skew-symmetric tensor dU = 0 (the vectors δ

(1)
i do not rotate), the skew-

symmetric tensor dV = d (the vectors δ
(2)
i rotate only due to the deformation-rotation tensor d), and the change of

the orthogonal tensor in the polar decomposition of the site gradient is due exclusively to the deformation rotation
R′ = (g + εd) · R only in the case where the eigenvectors of the symmetric tensor of the additional small elastic
strain e coincide with the vectors δ

(2)
i . In the remaining cases, all these rotations are also affected by the strain

tensor.
The exact evolutionary relations for (2.2) and (2.5) are obtained in the same manner as the exact evolutionary

relation (1.7) was obtained from the approximate relation (1.6).
If we use the tensor P (4) instead of h, all relations obtained above for elasticity remain valid for the gradients

FIN and FΘ in which hE is replaced by P , eE by PS , and dE by PC [PS = (P + P t)/2 and PC = (P − P t)/2 are
the symmetric and skew-symmetric parts P , respectively]. The pure strain tensor present in these relations, their
eigenvalues and eigenvectors, and the orthogonal tensor correspond to the inelastic or thermal kinematics, i.e., they
have the subscript IN or Θ.

Below, of all kinematic relations, we will need only the expression for the orthogonal tensor of the inelastic
and thermal site gradients, which, in the adopted notation is written as

R′ =
{
g + ε

[
PC − Ui − Uj

Ui + Uj
(δ(2)

i · PS · δ(2)
j )δ(2)

i δ
(2)
j

]}
· R (2.6)

(the subscripts IN, Θ, and ∗ are omitted).
3. Inelastic and Thermal Site Gradients without Rotation. As shown in [4], in the case of using

decomposition (2), the site gradients FIN and FΘ should be pure deformations without rotation, i.e., the orthogonal
tensors RIN and RΘ in the polar decompositions of these site gradients should be unit at any time. From this it
follows that, in relation (2.6), R = R′ = g. Then,

PC =
Ui − Uj

Ui + Uj
(δ(2)

i · PS · δ(2)
j )δ(2)

i δ
(2)
j . (3.1)

Representing the tensor PC in the basis δ
(2)
i : PC = P ij

C δ
(2)
i δ

(2)
j , where P ij

C = δ
(2)
i · PC · δ(2)

j , from relation (3.1), we
obtain

δ
(2)
i · PC · δ(2)

j =
Ui − Uj

Ui + Uj
(δ(2)

i · PS · δ(2)
j ).

From this it follows that

(Ui + Uj)(δ
(2)
i · PC · δ(2)

j ) = (Ui − Uj)(δ
(2)
i · PS · δ(2)

j ).

Equality of these components implies the equality of the tensors

(Ui + Uj)(δ
(2)
i · PC · δ(2)

j )δ(2)
i δ

(2)
j = (Ui − Uj)(δ

(2)
i · PS · δ(2)

j )δ(2)
i δ

(2)
j ,

which is represented as

V · PC + PC · V = V · PS − PS · V. (3.2)

The condition R = g leads to the equality δ
(2)
i = δ

(1)
i . This means that V = U and relation (3.2) can be written as

U · PC + PC · U = U · PS − PS · U. (3.3)

Equality (3.3) also follows directly from relation (4). Indeed, if the site gradient is pure strain, then (4) is written
as U = (g + εP ) · U∗. Then, the tensor U t = U t

∗ · (g + εP )t. Because of the symmetry of the tensors U and U∗, we
have U = U t and U∗ = U t∗. Then, P · U∗ = U∗ · P t. Representing P as the symmetric and skew-symmetric parts,
we obtain relation (3.3).
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We write the equations for dIN and dΘ. From expression (4), it follows that PIN = F−1
E∗ ·hIN ·FE∗. Determining

the symmetric (PIN)S and skew-symmetric (PIN)C parts of the tensor PIN and substituting them into relation (3.3),
in which, in this case U ≡ UIN∗, we obtain the following equation for dIN:

A · dIN + dIN · At = C, A = (F−
∗ )t · UΘ∗ · F−1

E∗ , C = eIN · At − A · eIN. (3.4)
Similarly, substituting the tensor PΘ from expression (4) and setting U ≡ UΘ∗ in (3.3), we obtain the following
equation for dΘ:

A · dΘ + dΘ · A = C, A = (F−
∗ )t · UΘ∗ · F−1

∗ , C = eΘ · A − A · eΘ. (3.5)
In Eqs. (3.4) and (3.5), the tensors A and C are known.

Equations (3.4) and (3.5) can be written as A · X + X · B = C, where B = At or B = A; X = dIN or
X = dΘ. This equation has a unique solution if the tensors A and −B do not have common eigenvalues (see [6, 7]).
Equations (3.4) and (3.5) satisfy this condition. Setting eΘ = βθg in Eq. (3.5), where θ is a small change in the
temperature Θ (thermal small deformation obeys linear thermal-expansion law), we obtain A · dΘ + dΘ · A = 0.
By virtue of the uniqueness of the solution of this equation, dΘ = 0. Because the tensor dIN is skew-symmetric,
Eq. (3.4) for any basis ri reduces to the following system of three linear equations with three unknowns:

3∑

k,l=1

k<l

Bkl
(ij)dkl = −

3∑

k=1

Ck
(ij)ekk −

3∑

k,l=1

k<l

Dkl
(ij)ekl, i, j = 1, 2, 3, i < j.

Here
Bkl

(ij) = Aikglj + gkiAjl − Ailgkj − gliAjk,

Ck
(ij) = Aikgkj − gkiAjk, Dkl

(ij) = Aikglj − gkiAjl + Ailgkj − gliAjk,

Aij and gij are the contravariant components of the tensor A from (3.4) and the metric tensor, which are normalized
to the basis ri.

We note that passage to the limit reduces Eqs. (3.4) and (3.5) to exact evolutionary equations.
Conclusions. As shown in [4], according to the principle of objectivity, in the representation of the total

site gradient F in the form F = FE · FIN · FΘ, the inelastic and thermal site gradients should be pure deformations
without rotations. Using this requirement, the missing relationship was obtained between the small strains eIN

with the known constitutive relation and the small rotations dIN and between the small strains eΘ with the known
constitutive relation and the small rotations dΘ.
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